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Fundamentals of the 
Analog Computer

Circuits, technology, and simulation

T
he analog computers created in the
years immediately following World
War II were based on electronic
versions of the mechanical differen-
tial analyzer, first conceived by
Lord Kelvin and implemented at

MIT during the 1930s by Vannevar Bush. The
heart of the analog computer is the operational
amplifier, which consists of a high-gain dc
amplifier with a feedback impedance Zf and
input impedances Z1, Z2, and Z3, as shown in
Figure 1. Operational amplifiers, configured as
in Figure 1, can be combined to solve linear
differential equations with constant coeffi-
cients. Figure 2 shows how two integrating
amplifiers and one summing amplifier can be

interconnected to solve a second-order mass-
spring-damper system.

The dc operational amplifier was first devel-
oped by Philbrick and researchers at Bell Laborato-

ries, but later improved by Goldberg at RCA
Laboratories with the addition of drift stabilization.

U.S. government-sponsored projects for the develop-
ment of analog computers for real-time simulation of flight

equations included Project Cyclone at Reeves Instrument Cor-
poration, Project Typhoon at RCA Laboratories, and the DACL

(Dynamic Analysis and Control Laboratory) at MIT, while Project
Whirlwind funded the initial development of digital computers for real-

time flight simulation at MIT.
To solve differential equations with specified initial values for the state variables, it is neces-

sary to include initial-condition relays with the integrating amplifiers. Figure 3 illustrates the cir-
cuit for a single integrator, which includes both a reset relay and a hold relay. When the reset
relay is energized, the amplifier input is switched from the input computing resistors to the
summing junction of the two initial-condition resistors; the integrator output voltage then
assumes the value eo(0), the desired initial condition. When the reset relay is de-energized, the
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amplifier input is reconnected to the input computing
resistors, and the analog solution to the differential equa-
tion proceeds. Figure 3 also shows a hold relay that, when

energized, disconnects the amplifier input from all input
resistors. This procedure then stops the integration and
freezes the integrator output voltage at its current value.

The hold mode offers a useful method
for accurately reading all integrator
values at predetermined times during
an analog solution.

To solve linear differential equa-
tions with time-varying coefficients,
the author utilized a stepping relay to
vary the appropriate computing resis-
tor of an operational amplifier at a
fixed sample rate in time. The resistor
for each time step was chosen so that
the time integral of the resistor value
matched the time integral of the cor-
responding continuous time function.
Figure 4 shows a simple example,  an
analog circuit for solving Bessel’s
equation of order zero.

In [1], examples are given of ana-
log solutions of the time-dependent
transient responses of one- and two-
degree-of-freedom mechanical sys-
tems. The transient response of
simple feedback control systems,
where the analog computer solutions
are recorded as a function of the inde-
pendent variable time by using a
direct-inking oscillograph, is explored
as well. Also shown are the solutions

of both Bessel’s and Legendre’s
differential equations, which are
solved as second-order linear
systems with time-varying coef-
ficients using the stepping-relay
scheme described above (and
shown in Figure 4) to approxi-
mate the variable coefficients.
Solutions for the static displace-
ment of structural beams with
various boundary conditions
and load distributions are also
solved by allowing time on the
analog computer to correspond
to distance along the beam. The
normal-mode frequencies of
both uniform and nonuniform
beams are solved as two-point
boundary-value problems, again
by letting time on the analog
computer represent distance
along the beam. Here the un-
known ratio of the two nonzero

Figure 2. Analog circuit for simulating a mass-spring-damper system. Amplifier 1 sums
the terms in the equation for d2x/dt2 and integrates the sum to obtain −dx/dt. Amplifier
2 integrates −dx/dt to obtain x. Amplifier 3 simply inverts x to obtain −x. Note that all
integrators are inverting.
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Figure 1. Operational amplifier. When the feedback and input impedances are
resistors, the output voltage is proportional to the sum of the input voltages. When
a capacitor C is used as a feedback impedance, Zf = 1/(C s) and the output volt-
age is proportional to the time integral of the sum of the input voltages.

Input
Voltages

Output
Voltage

dc Amplifier
Gain = −

Z1 Zf

eo

if
i1

i2

i3

Z2

Z3

e1

e'

e2

e3

Zf

Z1

Zf

Z2

Zf

Z3
— e1+ — e2+ — e3eo ≅ −                                   .





µ

For the dc amplifier gain   >> 1 + — + — + — ,
Zf

Z1

Zf

Z2

Zf

Z3
µ

Letting i1+i2+i3 = if and e' = − —1  eo, it follows from Ohm's Law thatµ

Zf

Z1

Zf

Z2

Zf

Z3
— e1+ — e2+ — e3

Zf

Z1

Zf

Z2

Zf

Z3
— + — + — 



1+1–

eo = ————————— .

µ 1+



June 2005 31IEEE Control Systems Magazine

initial state variables, together with the unknown eigenval-
ue for each mode, are varied by trial and error until the
two specified end conditions are met.

Stability of Operational Amplifiers
Because the operational amplifier represents a feedback
system with a wide choice of feedback and input imped-
ances, it is important to consider the dynamic require-
ments on the amplifier gain µ(s) to ensure closed-loop
amplifier stability. These requirements can be understood
by breaking the feedback loop, as shown in Figure 5, with
the input impedance Zi grounded to represent zero input
voltages. The overall open-loop transfer function is then
given by 

eo

e′ (s) = − µZi

Zi + Zf
,

also known as the return ratio. For the closed-loop system
to be stable, the phase shift of the open-loop system must
be more positive than −π at the frequency of unity open-
loop gain, defined as the crossover frequency. To be con-
servative, we usually require the phase shift of the
open-loop system to be equal to −π/2 at the crossover
frequency. Clearly 

|µ| =
∣
∣
∣
∣

Zf + Zi

Zi

∣
∣
∣
∣

at the crossover frequency. If the feedback and input
impedances are resistors, as in the case of a summing
amplifier, then the crossover frequency occurs when 

|µ| = Rf + Ri

Ri
.

If the feedback impedance is a capacitor, then |Zf | � |Zi|
and the crossover frequency occurs when |µ| = 1. To
ensure that the open-loop phase shift is equal to −π/2 at
the crossover frequency for all possible summer and inte-
grator configurations, it follows that the phase shift of the
amplifier gain µ(s) should be −π/2 or greater at all frequen-
cies for which |µ| > 1. When the dc operational amplifier is
a stable minimum-phase system (no zeros or poles in the
right-half plane), which is indeed the case for both vacuum-
tube and transistor amplifiers, a phase shift of −π/2 or
greater is realized when the slope of the log |µ| versus
log |ω| plot is greater than or equal to −6 dB/octave. Figure
5 shows the resulting open-loop frequency response.

An example of a more complex configuration of feedback
and input impedances is the single amplifier circuit for sim-
ulating a second-order linear system, as shown in Figure 6.
To examine the stability of this feedback system, we
ground the input terminal −ei, break the feedback loop as
shown in the figure, and let the open-loop input be e′

o. This
one-amplifier circuit for simulating a second-order system
can be used in the feedback loop of a high-gain amplifier to

Figure 3. Circuit for integrator mode control. The reset
relay, when energized, establishes the initial condition for
the integrator. The hold relay, when energized, stops the
integration and freezes the output voltage eo.

Figure 4. Analog circuit for solving Bessel’s equation of order zero. The variable coefficient is approximated with the stair-
case function using a stepping relay.
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obtain a representation of the reciprocal of a second-order
system. The author utilized such a scheme to implement
an electronic drive circuit for the two-channel direct-inking
oscillograph used for recording analog solutions. In this
case, the recorder by itself was well represented by the
dynamics of a second-order system with an undamped nat-
ural frequency of approximately 30 Hz. When combined
with the electronic drive circuitry described earlier, the
bandwidth of the overall recording system was extended
to more than 100 Hz.

The Use of Potentiometers to Set
Coefficient Values in Analog Simulations
All of the circuits described thus far for the analog solution
of differential equations have utilized resistors to set
summing and integrating amplifier gains. However, a much
more practical method for implementing the precision set-
ting of arbitrary coefficients in analog simulations utilizes
potentiometers. For example, the potentiometer shown at
the top of Figure 7 with input voltage x provides an output

voltage cx, where c is a
coefficient that can be
set between 0 and 1. The
diagram of the analog
circuit for simulating the
mass-spring-damper sys-
tem, shown earlier in Fig-
ure 2, is repeated in
Figure 7 using poten-
tiometers to represent
the fixed coefficients in
the problem. The feed-
back impedances are not
shown in the operational
amplifiers in Figure 7.
Instead, only the fixed

input gains (nominally one or ten)
are shown, with a triangle repre-
senting a summing amplifier and a
triangle attached to a vertical bar
representing an integrating amplifi-
er. Thus, in Figure 7, amplifiers 1
and 2 are integrators, whereas
amplifier 3 is an inverter. The input
resistors m/c and m in Figure 2 are
replaced in Figure 7 with coefficient
pots 1 and 2 set at c/m and 1/m,
respectively, in both cases driving
unity gain inputs. The input resis-
tor m/k in Figure 2 is replaced by
coefficient pot 4, set at 0.1 c/m and
driving a gain-of-ten input. Pot 4 is
used in Figure 7 to set the initial
condition x(0) on the mass

displacement, whereas there is no indication of initial-
condition circuitry in Figure 2.

It should be noted that the setting of the output wiper
arm on the coefficient pot must take into account the input
resistor driven by the pot, since that input resistor is in
parallel with the pot resistance from wiper arm to ground.
In general-purpose analog computers, the coefficient pots
are normally set in a pot-set mode, with the pot input x
replaced by +1 reference (that is, +100 V for analog com-
puters based on 100-V reference, and +10 V for analog
computers based on 10-V reference). The pot is then set to
the desired value, either by reading a digital voltmeter or
by means of a null meter connected between the pot out-
put and a reference pot with a precision dial. Note that the
coefficient pots are not set by reading the pot dials, even
though the coefficient pots are usually ten-turn helical pots
with precision, counter-type dials.

It is apparent that the variables used in analog simula-
tions must be properly scaled both to avoid over-ranging
amplifier outputs and to ensure that amplifier outputs

Figure 5. Operational amplifier frequency response. This open-loop frequency response is
needed to provide 90° of phase margin for any ratio of feedback to input impedances.
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range over a reasonable fraction of
full-scale during any given solution.
A similar problem occurs when
using fixed-point digital computa-
tion. The simplest solution is to
represent each variable as a scaled
fraction, the variable divided by its
maximum value. Then each scaled-
fraction variable will range over
±1, which corresponds to ±100 V
in the case of 100-V analog comput-
ers and ±10 V in the case of 10-V
analog computers. Actually, many
engineers (including the author)
have found that the process of
scaling problem variables can lend
considerable insight into the prob-
lem itself, including the identifica-
tion of dominant terms.

Servomultipliers for
Analog Computers
All of the example analog simula-
tions described thus far have
involved the solution of linear dif-
ferential equations, including dif-
ferential equations with time-
varying coefficients. Figure 8
shows a schematic of a typical ser-
vomultiplier. The three ganged
potentiometers at the right side of
the figure are driven by a two-
phase induction motor with an n:1
gear reduction (not shown in the
figure). The servomotor is in turn
driven by a magnetic amplifier,
which receives its dc input from an
analog controller unit. The error in
servo output angle is given by
e = Xin − Xout, where Xin is the command input angle for
the servo and Xout is the measured output angle, as
obtained from the wiper arm output −Xout of the poten-
tiometer with −100 V and +100 V connected to the high
and low side, respectively. With ±Y and ±Z connected
across the second and third potentiometers, the pot out-
puts represent XY and X Z , respectively. Note that the sta-
tic accuracy of the servomultiplier depends on the
linearity of each ganged pot as well as the static nulling
error of the servo.

Typical pots used in servomultipliers exhibit a maxi-
mum linearity error ranging between 0.02% for ten-turn
wire-wound, ganged potentiometers to 0.1% for one-turn
ganged potentiometers, either wire wound or film type.
The static nulling error of the servomultiplier depends on

the overall design of the servo, the static friction due to
both pot friction and gear-train friction, and the static reso-
lution of the ganged potentiometers. In the case of wire-
wound potentiometers, the static resolution is equal to the
reciprocal of the number of wire turns, typically 3,000 for
one-turn pots and more than 10,000 for ten-turn pots. The
static resolution error associated with conducting-film
pots can approach zero. To preserve static accuracy in the
servomultiplier, it should also be noted that it is important
for the multiplier pots with outputs XY and X Z in Figure 8
to drive input resistors that are identical with the resistor
that loads the output −Xout of the reference pot (that is, 1
megohm in the example shown here).

The transfer function of a typical servomotor plus the
magnetic amplifier driver is given by 

Figure 7. Using potentiometers to set coefficient values in an analog simulation cir-
cuit. Note that pot 3 is set at 0.1 c/m because of the gain-of-10 input. To speed up the
setting of coefficients in large problems, servo-set potentiometers were widely used in
state-of-the-art analog computers.

Figure 8. A servomultiplier that uses a 60-Hz, two-phase servo motor driven by a
magnetic amplifier. The analog controller circuit is used to provide additional damp-
ing. Typical multiplier accuracy was 0.1% or better. Because of the limited servo
bandwidth, the servo input Xin should be assigned to the slower of the two variables
in computing a product.
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M(s) = Km/ I
s2 + s/Tm

, (1)

where I is the total inertia of the servomultiplier
(including servomotor, gear train, and ganged poten-
tiometers referred to the servo output shaft) and Tm is
the motor time constant. If the analog controller circuit
in Figure 8 consists of a pure gain K , then the overall
servo transfer function is approximately represented by
a second-order system with an undamped natural fre-

quency given by ωn = √

K Km/ I and damping ratio given
by ζ = (1/2)

√

I/K Km/Tm . To obtain satisfactory nulling
errors, the gain constant K for typical servomultipliers
must be sufficiently large that the resulting damping ratio
ζ is too small for satisfactory transient performance. Thus,
it is necessary to add rate control to the proportional con-
trol in the analog controller circuit. It also may be desir-
able to add integral control to ensure low nulling error
(that is, good servo tracking) for a slowly varying input Xin.
Figure 9 shows an operational amplifier circuit that pro-
vides the necessary controller transfer function, where the

rate control term Ces is bandwidth-
limited by the transfer function
1/(τs + 1).

The overall servomultiplier trans-
fer function for sinusoidal inputs
predicts the dynamic performance
of the closed-loop system based on
linear models of the subsystems.
However, the servomotor has two
important characteristics that are
not modeled by the motor transfer
function (1). These characteristics
include the acceleration limit
|X ′′|max and the velocity limit |X ′|max

for large motor control
inputs. The experience
gained in designing servo-
multipliers for analog com-
puters led to the realization
that the design of an electro-
mechanical control system,
including the choice of com-
ponents, is dominated by
nonlinear requirements such
as the acceleration and
velocity limits (large-motion
nonlinearities) and the
nulling error or static resolu-
tion (small-motion nonlinear-
ities). The role of linear
design methods is generally
limited to the choice of con-
troller parameters needed to
produce satisfactory system
stability margin and transient
response [2].

Other Nonlinear
Analog-Computer
Components
While the servomultipliers
described above were widely
utilized in analog computers

Figure 10. Diode circuit for approximating ((X + Y)/2)2 for X + Y > 0. The same circuit
is repeated with inputs −X and −Y to approximate ((X + Y)/2)2 for X + Y < 0. A similar
pair of circuits with inputs X and −Y, and −X and Y, with diodes reversed and +100 bias
voltages, is used to approximate −((X − Y)/2)2 . A single operational amplifier is used to
sum the outputs of all four circuits to produce the product XY.

Figure 9. One-amplifier analog controller circuit for proportional, bandwidth-limit-
ed rate and integral control. Alternatively, a circuit that requires two conventional
integrating amplifiers and two summing amplifiers can be used.

Where K =

Input
−e

Output

R2

R1
C1

Rf

Zf

Zi

C2

u
e

K== 1+
Ces

τs + 1

τ = R1C1.

(1+ Cis
−1)

Rf

R2

, Ce = (R1 + R2) C1 , Ci =
1

R2 C2

,

−u
1

•
•
•
•

•
•
•
•

2R1a

2R2a

2R3a

2R3a

2R2a

2R1a

R1b

R2b

R3b

Y

X

−100

X+Y

Y

X

−100

Y

X

−100
D3

D2

D1

i1

i2

X+Y X+Y

i

i2

i=i1+i2+i3+ ...

i3

i3

i1

≡ −
2

2

X+Y

X+Y

0.1



during the 1950s, several alternative, all-electronic devices
were developed to improve the overall dynamics of analog
multipliers. The first of these was the time-division multi-
plier, initially developed by Goldberg [3]. In this scheme,
the voltage X is converted to a pulse-width modulated sig-
nal used to drive an electronic switch, which modulates
the voltage Y . The area under each cycle of the switched
signal is proportional to the product XY . The switched sig-
nal drives a low-pass filter to produce a smoothed output
XY . Although time-division multipliers achieved dynamic
errors that were typically two orders of magnitude smaller
than those associated with servomultipliers, these multi-
pliers often exhibited undesirable drift in voltage offset
with time. Another device was the quarter-square multipli-
er, which was based on the equation

XY = (X + Y)2 − (X − Y)2

4
. (2)

The circuit shown in Figure 10 is used to generate a seg-
mented approximation to ((X + Y)/2)2 for X + Y > 0.
When X + Y becomes positive enough, the diode D1 starts
conducting and the current i1
starts to increase linearly for
further increases in X + Y . For a
larger value of X + Y , diode D2

starts to conduct, and the cur-
rent i2 starts to increase linearly
with increasing X + Y . The
overall circuit in Figure 10 con-
sists of n diode segments. The
amplifier output in Figure 10
then produces an n-segment
approximation to −((X + Y)/2)2

for X + Y > 0. With ideal
diodes, the segmented approxi-
mation to a quadratic function
then exhibits a maximum frac-
tional error of 1/(8n2). With the
silicon-junction diodes normally
used for quarter-square multi-
pliers, the nonideal diode cur-
rent-voltage characteristic
produces additional rounding of
each segment knee, further
reducing the quadratic-approxi-
mation error.

It should be noted that (2) for
the quarter-square multiplier can
be replaced with the formula

XY = |X + Y |2 − |X − Y |2
4

.

By replacing (X + Y)2 with |X + Y |2 and replacing (X − Y)2

with |X − Y |2, we can eliminate the need for two of the four
segmented quadratic approximation circuits similar to the
one shown in Figure 10. Furthermore, the calculation of
|X + Y | and |X − Y | can be combined with the diode circuit
for the segmented quadratic approximation by using the cir-
cuit shown in Figure 11. Here the voltage at the junction of
diodes Da1 and Da2 is proportional to |X + Y |/2, and the
voltage at the junction of diodes Da3 and Da4 is proportional
to −|X − Y |/2, as indicated in Figure 11. These diode-junc-
tion voltages then drive biased-diode circuits similar to the
one in Figure 10 to produce segmented approximations to
the quadratic function. Because of the loading effect of the
biased-diode circuits on the passive absolute-value circuit in
Figure 11, the effect of the nonideal diode characteristics on
the rounding of the knees of the segmented approximation is
increased. This rounding in turn causes error in the segment-
ed approximation to the quadratic function to be consider-
ably less than the value of 1/(8n2) for ideal diodes, where n
is the number of diode segments used for the quadratic
approximation. Thus, the completely passive quarter-square
multiplier circuit of Figure 11, in addition to reducing by
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Figure 11. A completely passive quarter-square multiplier circuit terminated in a single
operational amplifier. The circuit is based on XY = (|X + Y |/2)2 − (|X − Y |/2)2 . The
circuit output is connected to the summing junction of an operational amplifier with a
0.1 m� feedback resistor.
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more than a factor of two the number of required compo-
nents, also is more accurate than the circuit in Figure 10 for a
given number n of diode segments. The author developed a
ten-segment version of this circuit in 1959.

It should be noted that analog division of Y by X can be
accomplished by utilizing a multiplier in the feedback loop
of an operational amplifier. With the amplifier input con-
nected to −Y , the multiplier input Xin connected to X , the
multiplier input Yin connected to the amplifier output, and
the multiplier output XinYin connected to the amplifier
feedback resistor, the amplifier output is the quotient Y/X .

The generation of a function f(X ) can be accomplished in
analog computation by using a segmented approximation to
f(X ). The segmented approximation can be generated using
a diode function generator, which consists of biased-diode
circuitry similar to that shown in Figure 10, with potentiome-
ters used to set the slope and breakpoint of each diode seg-
ment. Alternatively, a servomultiplier can be used, with n
taps on one of the servo-driven pots. Padding resistors con-
nected between the taps can then be adjusted to obtain the
pot output Yf(X ), with f(X ) represented by an approxima-
tion with n + 1 straight-line segments. Similarly, the func-
tions sin(X ) and cos(X ) are generated either by diode
function generators or servo-driven sine-cosine pots. For a
description of these and other analog components, see [4].
One of the first implementations of time-optimal control was
accomplished using biased-diode analog circuitry to repre-
sent the required nonlinear control law [5]. Also, the output
saturation voltage characteristics of unstabilized operational
amplifiers were used to represent simple nonlinearities, such
as relay-type bang-bang controllers and Coulomb friction [6].

Current Availability
of Analog Components
It should be noted that many of the components utilized in
the early analog computers are currently available in inte-
grated-circuit form. For example, operational amplifiers
with bandwidths and drift characteristics equal to or bet-
ter than the drift-stabilized amplifiers of two or three
decades ago are available at a fraction of the cost, with up
to four amplifiers located on a single chip. Nevertheless,
with the current and projected speed of digital-processor
chips, it seems unlikely that analog computers will ever
again match their prominent former role as a general-pur-
pose device for the simulation of dynamic systems. 
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